United States Patent

US009262469B1

(12) 10) Patent No.: US 9,262,469 B1
Taylor et al. (45) Date of Patent: Feb. 16, 2016
(54) INTELLIGENT DATA INTEGRATION 2004/0183800 Al 9/2004 Peterson
SYSTEM 2005/0189414 A1* 9/2005 Fano etal. .cocoooocveerer 235/383
2009/0157700 Al 6/2009 Van Vugt
. . 2010/0070448 Al 3/2010 Omoigui
(71) Applicant: Monsanto Technology LL.C, St Louis, 5011/0004864 Al 12011 Gray gl
MO (US) 2011/0264642 Al 102011 Mital et al.
(72) Inventors: Christopher Allen Taylor, Ballwin, MO OTHER PUBLICATIONS
(US); Ryan Jerry Richt, St. Louis, MO
(US) Marcio Katsumi Oikawa, et al., GenFlow: Generic flow for integra-
tion, management and analysis of molecular biology data, Genetics
(73) Assignee: Monsanto Technology LLC, St. Louis, and Molecular Biology, Brazilian Society of Genetics, www.sbg.
MO (US) orgbr, published 2004, pp. 691-964, vol. 27, issue 4, Brazil.
Jessica Severin, et al., eHive: An Artificial Intelligence workflow
(*) Notice: Subject to any disclaimer, the term of this system for genomic analysis, BMC Bioinformatics, published 2010,
patent is extended or adjusted under 35 11:240, 15 pages, www.biomedcentral.com/1471-2105/11/240.
U.S.C. 154(b) by 249 days. Daniel Shegoegue, et al., Object-oriented biological system integra-
tion: a SARS coronavirus example, Bioinformatics, published Feb.
(21) Appl. No.: 13/868,258 24, 2005, pp. 2502-2509, vol. 21 No. 10, Oxford, England.
(22) Filed: Apr. 23, 2013 * cited by examiner
Related U.S. Application Data Primary Examiner — Syed Hasan
(60) Provisional application No. 61/636,859, filed on Apr. (74) Azzgrneyf Agent, or Firm —Senniger Powers LLP;
James E. Davis
23,2012.
(51) Int.CL (57) ABSTRACT
GOG6F 17/30 (2006.01) Data objects stored in a data store include data attribute(s) and
(52) US.CL associated value(s) for the attributes. Data analysis tools
CPC oo, GOG6F 17/30386 (2013.01) (DATs) stored in a data store are associated with reference
(58) Field of Classification Search data attribute(s). The data objects are identified by one or
None more DATs based on each reference data attribute(s) of a
See application file for complete search history. corresponding DAT matching one of the data attribute(s) of
. the corresponding data object(s) and independent of the value
(56) References Cited for the data attribute(s). The DAT's generate an additional data

U.S. PATENT DOCUMENTS

7,747,981 B2 6/2010 Gray

2002/0035569 Al 3/2002 Clark et al.

object as a function of the identified data object, and the
additional data object is stored in the data store.

44 Claims, 8 Drawing Sheets

US 9,262,469 B1

Sheet 1 of 8

Feb. 16, 2016

U.S. Patent

U.S. Patent Feb. 16, 2016 Sheet 2 of 8 US 9,262,469 B1

FIG. 2

US 9,262,469 B1

Sheet 3 of 8

Feb. 16, 2016

U.S. Patent

TIygwding T g ndug !

=~ 0]

EEEEEEEEEEEEEE -

Pygindno P ivandug

P e,
~H{3%a)(%0a); (Pog x;,,

B e gl B ol

|

\ w

|

|

|

|

& v |

|

|

(2!

EEEEEEEEEEEEEE -4

|
m
m
A
m
m
m
|
m
m
|
m
|
m
m
|
m

Yiva g Yiyq ndug

U.S. Patent Feb. 16, 2016 Sheet 4 of 8 US 9,262,469 B1
110
‘:\ Ny
»
o e e e e)
E I ; ﬁ On
DQAB \\ i / A /] Al valus
é\: vaiiue /, E ;
! value f 8 /
- E |
E]
[i C : ; ”’f)%)m
| | < C: value
E i D / ; D: valug
BQE E |
E: valus E 7 E ; ;
| i E 7 | E}QF
E ; F: value
E |
DQGH > E i G ; ;
G: value E |
H: value : i, H / |
E ! E}@I
E /“’ I ,; ; I: value
BO, s |
3 vaiuy g / d ; |
E |
| |
L E |
L: value i 7 L ; i
E | DQM
T
DO, [|
N: vaiu; E Y ;
e | |
| |
| |
| |
E |
Ee oo e oo oo e e oo e .

US 9,262,469 B1

Sheet 5 of 8

Feb. 16, 2016

U.S. Patent

HAINGIHDS

m\v
1 474

mmm\\

i 10

HIHUVHS

U.S. Patent Feb. 16, 2016 Sheet 6 of 8 US 9,262,469 B1

F1G. 6

i3]
Raw Reads (Bata Ohject)
ReadFast(GArac 2 {string,
Read2Fast(QArachmentMName: istringl,
Species:
Accession: {string],
~o Genome Assembler (DAT)
\\
15} >~ - e v
m i3 ~a| [ReadlFastyAttachmentMName,
Road2Fast{3AttachmoentMName]
i Contig DNA Sequence (Data Object)
NucleotideSequencc: [string}, /
Length: {integer].
Narne: [string],
| >~
| S~ Gene Predictor (DA'T)
~
B) i Nucleotidebequence]
Predicted Gene (Data OGhiject)
redictionMethod:
AmincAcidSequence: |
Name: [string],
Length: {integer},
T~ a Texin Predictor (DAT)
n T~al
{AminoAcidSequence]
Predicted Toxin (Data Object) ¥
TiValoe: [integer], - |
ProfilcHMMId: {string], 15 [
A

Library of Known Toxins (Data Object)

HMM Profiles

————» Data object inpuat to BAT

—— Data Object output from DAT

<« — » Querying/receiving information from
3rd party data object

U.S. Patent Feb. 16, 2016 Sheet 7 of 8 US 9,262,469 B1

fjeci

(435

=
=
=
~
—
w e
-t =
= pes
> =
F———_——————— =
= o
- ¥ Ry
i T
- =~

M e e e e et

.
3 =
F =
Fiay -k o
haad - ! '
- P -
L = | =
- e
- f T < i
N ver'l —F
B - R
2 8 2
= = =
= 2 =
= - = e R R -]
: = o b
< & -
o] 23w r
. : 2 P
w e TR 2
= - o e hot
z ; 2 a s
a i =
g 2 ¥
= = Py r
& = < i
o Pogin
e Bl
E\
. : 1
f ",)
i
poes
jouy
T
=
e
2
=
A~
T P
=
By
] .
-~
- i
- =
= =
= ot
. - e -
bl S p
- 51
—- o
=]
3 =
5
- -
3
W
— a2
{ e o
s 32
. wh e
< = =
S = o
ol = 1w
. A
- o=
Pl bl H

U.S. Patent Feb. 16, 2016 Sheet 8 of 8 US 9,262,469 B1

FIG. 8

Read Quality {DAT)

B . -v [Read i Fast(QAttachmentMName,
- Read?FastQAttachmentName |

Raw Reads (Data Object)

LibrarylnsertLongth: [mateger],

Read FastQAttachmentMName: {string],
Read?FastQAttachmentMName: {string], A
Species: {string], Quality Score Report (Data Object)
Accession: {stang],

in

QualityScoreDistnibution: [infeger]
N Total Score: [integer]

Geneme Asserabier (BAT)

[Read1FastQAttachmentName,
Read?FastQAttachmentName]

US 9,262,469 B1

1

INTELLIGENT DATA INTEGRATION
SYSTEM

BACKGROUND

Many companies and research institutions already possess
anunmanageably rich, deep and extensive menagerie of valu-
able raw data. However, these companies and research insti-
tutions are often ill-equipped to deal with the data in a com-
prehensive and meaningful way. It is becoming more
expensive to integrate, process, and analyze such a large
amount of data compared to the expense of generating the
data itself. This problem is particularly evident in the biotech-
nology industry, and is also evident in other industries,
including finance, pharmaceuticals, insurance, operations
research, advertising, military intelligence/security, social
media analytics and medicine.

For example, in the field of biotechnology, a company (or
researcher) may have generated data relating to quantitative
RNA sequencing, gene expression and gene regulation, pro-
tein crystal structures, protein interaction data, high through-
put phenotyping (leaf surface area, root morphology, shoot
mass, etc), gene expression data from eukaryotic or bacterial
cell systems, leading to the creation of high resolution genetic
maps, genotypic marker data and trait association data, and
whole reference genome sequencing with a myriad of anno-
tations. The data sets may be across stresses (nitrogen deficit,
water deficit, high salt, etc), species (corn, soy, sugarcane,
etc), populations (historical, geographic, etc), tissues (root,
shoot, meristem, etc), and time (developmental or seasonal/
historical). With next-generation sequencing, high through-
put automated processing (via imaging or robotics) in growth
chambers or the like, biotechnology and/or pharmaceutical
companies and researchers will generate more and more
insightful data than ever before. Such data may assist in the
generation of as new vegetable varieties, protein-optimized
antibiotics, individualized medical diagnostics and therapeu-
tics, as well as complete insect, viral, plant or bacterial
genomes. When RNA-seq based coding and non-coding gene
annotations and expression profiles are included along with
whole genome nucleosome positioning, DNA methylation,
histone modification and other epigenetic data and single and
combinatorial gene knockouts the deluge of data and the
current inability to comprehensively analyze it and make it
useful are made abundantly clear.

DNA sequencing is the highest possible resolution mea-
surement in the life sciences and, until recently, was the most
costly. Since the completion of the human genome project in
2001, the cost of DNA sequencing has dropped more than
10,000 fold. This has been achieved by a radical increase in
data output that continues to double every 6 months—much
faster than Moore’s 18 month law for microprocessor speed
doubling. As a result, biotechnology and medical applications
are quickly becoming DNA sequencing-based assays. A
genetic sequence is the ultimate biomarker—it is the indivis-
ible “quanta” of the life sciences. These technological
changes affect everything from the discovery and screening
efforts of academics, agro-biotechnology firms, and pharma-
ceutical giants to diagnostic and screening efforts of the
USDA, diagnostics labs, and hospitals. Most recognizable
university and life science companies have a genomics pro-
gram rooted in sequencing. In a few years, the costs will be
sufficiently low to spawn entirely new direct-to-consumer
markets and help realize true “personalized medicine.”

DNA sequencing, which outputs raw data, has in some
ways brought more problems than solutions. Although next
generation sequencing provides higher throughput, it is now

10

15

20

25

30

35

40

45

55

60

65

2

in smaller, less informative pieces (~100 letter long DNA
strings called “reads™) that are more difficult to analyze. A
single HiSeq DNA sequencer (available from Illumina LLC)
can produce an overwhelming one terabyte of data per week.
Even with a history of genomics expertise and an army of
bioinformaticians, it could take a company more than a month
to perform the most cursory analysis on a single such HiSeq
run. Traditional organizational and software paradigms for
dealing with this large amount of data simply do not scale to
the level of complexity and richness modern integrated analy-
ses necessitate. Moreover, it is necessary to integrate the data,
which means comparing new data to all historical data, and
that is precisely where the problem lies: comparing every-
thing with everything else gets into the realm of N2 problems
that take enormous computing resources to begin to analyze.

SUMMARY

Embodiments of the present invention relate to a system
that provides intelligent data integration. In particular, the
system enables a plurality of individual, independent, and
unaffiliated data analysis tools (DATs) to self-assemble into a
workflow. The workflow is comprised of a plurality of inde-
pendent processes. Each process comprises identifying from
a potentially large data store, such as a database, a particular
data object as an input data object for a particular DAT, and
executing the DAT to generate a separate data object as an
output data object. The processes, and thereby the DATs, link
themselves together when the output data object generated in
one process is used as an input data object for another process.
In this way, an arbitrarily complicated web of processes may
be integrated to perform a workflow, and the analysis per-
formed by the DAT of each process is aggregated so that an
aggregate work product emerges.

In one embodiment, the IDIS stores a plurality of data
attributes, a plurality of data objects, and a plurality of DATs
in a data store. For example, a data object and a first DAT, and
asecond DAT are stored in the data store. In one embodiment,
the first DAT and the second DAT are completely unaffiliated
with each other. The first data object has a first attribute set
comprising first data attribute(s) of the plurality of stored data
attributes and a value for the first data attribute(s). The first
DAT is associated with first reference data attribute(s) of the
plurality of stored data attributes, and the second DAT is
associated with second reference data attribute(s) of the plu-
rality of stored data attributes.

The first data object is identified for analysis by the first
DAT if each of the first reference data attribute(s) matches one
of the first data attribute(s) of the first data attribute set,
independent of the value(s) for the first data attribute(s). After
identifying the first data object, the first DAT generates a
second data object as a function of'the first data object and the
second data object is stored in the data store. The second data
object comprises a second data attribute set comprising sec-
ond data attribute(s) of the plurality of stored data attributes.
The second data object is identified for analysis by the second
DAT if each of the second reference data attribute(s) of the
second DAT matches one of the second data attribute(s) of the
second data attribute set of the second data object, indepen-
dent of the value(s) for the second data attribute(s). After
identifying the second data object, the second DAT generates
a third data object as a function of the second data object and
the third data object is stored in the data store. In this example,
the second DAT builds on the work performed by the first
DAT since output data object (e.g., the second data object) of
the first DAT also functions as the input data object for the
second DAT. As such, the third data object is produced from

US 9,262,469 B1

3

the first data object even though the two analyses (e.g., first
and second DATs) required to generate this aggregate work
product are unaffiliated with each other.

Other objects and features will be apparent and pointed out
hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

The following drawings form part of the present specifica-
tion and are included to further demonstrate certain aspects of
the present invention. Embodiments of the invention may be
better understood by reference to one or more of these draw-
ings in combination with the detailed description of specific
embodiments presented herein.

FIGS. 1 and 2 are block diagrams of an exemplary system
model in accordance with an embodiment of the invention.

FIG. 3 is a process diagram for the exemplary system
model illustrated in FIGS. 1 and 2.

FIG. 4 is a block diagram of an aspect of an exemplary
system model in accordance with an embodiment of the
invention.

FIG. 5 is a block diagram of an exemplary system in accor-
dance with an embodiment of the invention.

FIG. 6 illustrates a workflow for predicting toxins gener-
ated in accordance with an embodiment of the invention.

FIG. 7 illustrates one example the Gene Assembler DAT
also generates a Reference Genome data object in accordance
with an embodiment of the invention.

FIG. 8 illustrates an additional DAT entitled “Read Quality
(DAT)” subscribes to and analyzes the Raw Reads data object
(the same one from FIG. 6) to generate a data object entitled
“Quality Score Report (Data Object)” in accordance with an
embodiment of the invention.

Corresponding reference characters indicate correspond-
ing parts throughout the drawings.

DETAILED DESCRIPTION

The present disclosure relates to an intelligent data inte-
gration system (IDIS). FIG. 1 is a diagram that illustrates, by
example, a system model 100 for the IDIS. As illustrated, the
system model comprises data objects (DOs) and data analysis
tools (DATs). Each data object and data analysis tool is a
self-contained, distinct entity. In particular, each data object is
a non-executable data item. Each data analysis tool is a set of
executable instructions for interacting with (e.g., analyzing,
generating, referencing, querying) data objects to perform a
task. As explained below, the components and features of the
system model enable IDIS to integrate the tasks performed by
the DATs to provide an aggregate data product.

The illustrated system model 100 includes data objects
DOz, DO, DO, DO p, DOy, DO, DO, DO,,, DO, DO,,
and DO, and data analysis tools DAT ,, DAT , DAT .,
DAT ., and DAT,__;. Each data analysis tool defines data
object criteria, analyzes one or more data objects existing in
the IDIS that satisfy the defined data object criteria, and
generates one or more new data objects as a function of the
analyzed data objects. Accordingly, the one or more data
objects existing in the IDIS that satisfy the defined data object
criteria and are analyzed by a particular DAT represent input
data object(s) with respect to the particular DAT, and the one
or more new data objects that are generated by the particular
DAT represent output data object(s) with respect to the par-
ticular DAT. A DAT may also reference a DO in the analysis
of'the input DO or the generation of the output DO. A DO that
is referenced (e.g., queried) by a particular DAT represents an
auxiliary DO with respect to the particular DAT.

20

35

40

45

50

4

Each connection line shown in FIG. 1 that connects a DAT
with a DO represents an interaction between those connected
components. Specifically, the DOs that are connected to a
particular DAT via a solid line with an arrow pointing toward
the particular DAT are input DOs (collectively, “input set™)
for the particular DAT. Similarly, the DOs that are connected
to a particular DAT via a solid line with an arrow pointing
away from the particular DAT are output DOs (collectively,
“output set”) for the particular DAT. A DO connected to a
particular DAT via a dashed connection line is an auxiliary
DO for the particular DAT.

Inaccordance with the illustrated system model 100, DAT ,
operates to analyze DO, z, and DO, and to generate DO, as
a function of DO,z and DO,. As such, DOz, and DO,
function as input DOs for DAT ,, and DO, is an output DO
of DAT . DAT ; operates to analyze DO ,and to generate DO,,
as a function of DO . As such, DO, functions as an input DO
for DAT ;and DOy, is an output DO of DAT ,. DAT ., operates
to analyze DO, and to generate DO, and DOy as a function
of DO,p. As such, DO, functions as an input DO for
DAT .5, and DO, and DOy, are output DOs of DAT .. DAT
operates to analyze DO, and to generate DO, , as a function
of DO, As such, DO, , functions as an input DO for DAT .,
and DO,, is an output DO of DAT .. DAT,_,,; operates to
analyze DO and to generate DO, as a function of DO,. In
analyzing DO and/or generating DO, DAT ._, ; references
DO, for information. As such, DO, functions as an input DO
for DAT ,, DO, functions as an auxiliary DO for DAT,__;,and
DO, is an output DO of DAT,_,;.

The IDIS may include a DO, such as DO, shown in the
illustrated system model 100, that does not satisfy the criteria
of any of the existing DATs in the IDIS (ie., DO is
unmatched). Similarly, the IDIS may include a DAT, such as
DAT , shown in the illustrated system model 100, which is
inoperative because it has data object criteria that is not sat-
isfied by any of the existing DOs in the IDIS. However, the set
of data objects and data analysis tools existing in the IDIS is
dynamic in that data objects and data analysis tools can be
added to and removed from the IDIS. As described above, a
DO can be added to the IDIS as a result of being generated by
a DAT. A DO can also be added to the IDIS by uploading the
DO from another computing system, or by manually (i.e., via
user input) entering the DO into the IDIS. Once a DO is added
to the IDIS, if the DO satisfies the data object criteria defined
by any of the DATs existing in the IDIS, those DATs may
analyze the newly added DO. Thus, a DAT that is inoperative
becomes operative if a DO is added to the IDIS that satisfies
the data object criteria defined by that DAT. A DAT can be
manually (i.e., via user input) added to the IDIS. Once a DAT
is added to the IDIS, the newly added DAT can analyze DOs
that satisfy the data object criteria defined by the newly added
DAT. Thus, an existing DO that is unmatched becomes
matched if a DAT is added to the IDIS that has data object
criteria that is satisfied by the existing DO. As such, as new
DOs and DATs are added to the IDIS, new interactions
between DOs and DAT' are enabled so that additional analy-
ses are performed by the DATSs.

Referring generally to FIG. 2, the IDIS system model
enables the analyses provided by a plurality of'the DATs to be
aggregated without ever requiring an affiliation between each
of'the DATs (e.g., local affiliation) or of the plurality of DATs
(e.g., global affiliation). In particular, each DAT is a stand-
alone program that is executed as an independent entity. As
indicated by the lack of connection lines between the DAT's in
the system model 100, the DATs are autonomous and do not
interact with each other. Moreover, each DAT can be defined
exclusively with respect to each of the other DATs. In other

US 9,262,469 B1

5

words, each DAT may be created without knowledge of or
reference to each of the other DATs. The analyses performed
by two unaffiliated DATs are aggregated when an output DO
generated by one DAT functions as the input DO of another
DAT.

FIG. 2 highlights an exemplary aggregation of analyses
performed by the unaffiliated DAT's of the system model 100.
As illustrated, the analyses performed by unaffiliated DAT ,,
DAT ., and DAT,__; are aggregated as a function of com-
mon input and output data objects. In particular, DAT , defines
data object criteria, which is met by DO,z and DO, and
DAT , thereby analyzes DO,z and DO,. DAT, generates
DO, which reflects a result of the analysis of DO and
DO, and DO, is added to IDIS. DO, meets the data object
criteria defined by DAT ., so after DO, is added to IDIS it
is analyzed by DAT . And, DAT ., generates DO, and DO
which reflect a result of the analysis of DO, and DO and
DOy are added to IDIS. Although DO is unmatched when it
is added to IDIS, DOy is matched with DAT_,; because it
meets the criteria defined by DAT ._, ;. Accordingly, DAT . .,
analyzes DOy, and in doing so references DO,, and then
generates DO, which reflects a result of the analysis. Thus,
although DAT ,, DAT.,,, and DAT__, are completely unaf-
filiated with each other, in accordance with the system model
100, they self-assemble to produce an aggregate work prod-
uct (DOgy,) from initial data objects (DO 5z and DO,). For
example, the aggregate work product may represent a useful
assessment, which is produced through the assembly of DATs
from initial raw data.

Referring generally to FIG. 3, through the execution of
DATs, IDIS operates to create and perform workflows,
wherein IDIS simultaneously creates and performs each of
the workflows. A workflow is formed of a plurality of inde-
pendent and unaffiliated processes P(x). Each process
includes identifying a DO that satisfies the data object criteria
defined by a particular DAT as an input DO for that DAT, and
executing the particular DAT so that it analyzes the input DO
and generates an output DO reflecting a result of the analysis.
The processes effectively concatenate when the output DO
generated in one process is an input DO utilized by another
process. Thus, a series of processes P(x), where x=1,2 . . . n,
and n is the total number of processes in the series, self
assemble when a first process P(1) identifies the input DO for
the DAT of that process, and each subsequent process P(x),
for x>1, identifies as an input DO, the DO that was generated
as an output DO from process P(x-1).

FIG. 3 illustrates a workflow that is simultaneously created
and performed by the IDIS in an embodiment that includes
the exemplary DOs and DATs described in connection with
FIG. 2. In particular, once DO _; and DO, are received by
IDIS, IDIS implements a first process P(1). In the first pro-
cess, IDIS identifies as input DOs for DAT ,, and executes
DAT ,. The execution of DAT , results in the generation of
DO p, which is an output DO of DAT ,. Once DO, is gen-
erated IDIS implements a second process P(2). In the second
process, IDIS identifies DO, as an input DO for DAT ., and
executes DAT .. The execution of DAT ., results in the gen-
eration of DO and DO, which are output DOs of DAT .
Once DO is generated IDIS implements a third process P(3).
In the third process, IDIS identifies DO as an input DO for
DAT,__,, and executes DAT_,,. The execution of DAT.__,
results in the generation of DO 4, which is an output DO of
DAT,,__ ;. Thus, the required processes and order thereof for
generating DO, from DOz and DO, are simultaneously
determined and implemented by IDIS.

Referring generally to FIG. 4, in one embodiment, in addi-
tion to DOs and DATs, the system model 100 includes a

25

30

40

45

65

6

plurality of data attributes that are used to define the data
objects. Specifically, each data attribute is a particular param-
eter which can have various values. For example, a data
attribute of color could have values such as red, blue, yellow,
etc. In accordance with the system model, a data object can be
defined exclusively by a set of one or more data attributes and
specific values for each of the one or more data attributes. In
other words, the system model enables each data object to
consist only of the set of one or more data attributes and the
specific values for each of the data attributes of the set. As
such, there is no formal “type” associated with a data object.
As described in further detail below, this aspect of the system
model may be implemented using “duck typing” or “struc-
tural typing” In traditional programming systems, value
“slots” have an associated “type” which defined the range of
possible values that fit into that slot. Common types include
Integer, Floating-point or decimal number, String, Arrays or
Matrices, etc. In traditional object-oriented languages, every
class also defines a new type. For instance in Scala we could
define a “Duck” class with several properties:

class Duck(val countOfFeathers: Int, val colorOfBill:

String, val quackDuration: Float)

A variable such as:

val plucky: Duck=. ..

is constrained to only be allowed to contain instances of the
class Duck, that instance having the type “Duck.” An example
of assigning a new duck:

val plucky: Duck=new Duck(542, “yellow-orange”, 2.4)
By contrast, object-oriented duck typing in dynamic lan-
guages or structural typing in strong-typed languages consid-
ers values to be members of a given type *not* because they
have an associated named type such as “Duck” but only on the
basis of that object value conforming to a notion of a Duck.
This conformity can be on the basis of having certain methods
or having certain properties, etc. In Scala, one could define a
structural type for our duck like this:

type DuckLike={ val countOfFeathers: Int, val

colorOfBill: String, val quackDuration: Float }

And this type would consider our “Swan” class to conform to
“Duck” on the basis of having these properties, even though it
is not strictly an instance of a “Duck” class or a subclass of
Duck:

class Swan(val isBlack: Boolean, val countOfFeathers:

Int, val colorOfBill: String, val quackDuration:

Float)

This is now valid, demonstrating structural typing:

val plucky: DuckLike=new Swan(true, 685, “orange”,

1.2)

FIG. 4 illustrates an exemplary plurality of data attributes
110, which are included in an embodiment of the system
model 100. The exemplary plurality of data attributes 110
includes data attributes A, B, C, D, E, F, G, H,], K, L, M, N,
O, P, and 1. The exemplary data objects illustrated in the
system model 100 each have a data attribute set comprising
one or more of the exemplary plurality of data attributes 110
and a value for each of those data attributes. The subscript of
each illustrated data object is indicative of the data attributes
included in the data attribute set of that data object. For
example, DO, has a data attribute set consisting of data
attribute A, and DOz has a data attribute set consisting of
data attributes A and B. In accordance with this example, one
data attribute (i.e., data attribute A) may be used to define a
plurality of different data objects (i.e., data objects may have
common data attributes), and the value of the data attribute for
the different data objects may be the same or different.

In one embodiment, the IDIS employs a plurality of data
attributes, such as the exemplary plurality of data attributes

US 9,262,469 B1

7

110, as a library of data attributes. The library may include
data attributes (e.g., data attributes K, 0, and P) that are not
included in the set of data attributes of any of the data objects
existing in the IDIS at a given point in time. Data objects are
created (e.g., added to the IDIS) by selecting one or more of
the data attributes from the library of data attributes and
defining (i.e., assigning) values for the selected data
attributes. Thus, a data attribute must be defined in the library
of data attributes before it can be used to create a data object.
In this way, the plurality of data attributes (e.g., library of data
attributes) supply an ontology for the IDIS, with each data
attribute being an ontology term. This ontology provides
structure and a quasi-standardization (e.g., controlled
vocabulary) for the creation and analysis of the data objects.
Inone embodiment, the library of data attributes is dynamic in
that data attributes (i.e., ontology terms) can be added to and
removed from the library. Thus, the ontology of the IDIS may
continuously evolve.

Additional standardization may be achieved by defining
each of the plurality of data attributes in the library to specify
a computer programming data type for the values that can be
used for that data attribute to form a data object. Accordingly,
a data attribute may be defined to require that each and every
value corresponding to that data attribute is an integer, a
floating point, a fixed point, a string, an array, a record, a
union, an object, a set, a queue, Boolean, a tree, etc. For
example, data attribute A, illustrated in FIG. 4, may be
defined in the library so that any value assigned to data
attribute A is required to be a string. Thus, the value of A in
D, and the value of A in D is a specific string.

Inan exemplary embodiment, the IDIS defines a superclass
of data attributes, referenced as “OntologyTerm.” The
OntologyTerm superclass establishes parameters that must be
defined by each data attribute in the library (i.e., each ontol-
ogy term). In one example, the OntologyTerm superclass
requires each data attribute in the library to define a descrip-
tion parameter (“desc”) that describes the data attribute (i.e.,
a name for the data attribute) and a type (“type T”) that
specifies a computer programming data type for the values
that can be assigned to that data object. In accordance there-
with, each data attribute in the library is established as a class
(e.g., subclass) of the OntologyTerm superclass and provides
a particular name and a particular type. For example, data
attribute A and data attribute B are defined, in pseudo-Scala,
as follows:

class A

extends Ontology Term(“desc”){type T=String}

class B

extends Ontology Term(“desc”)(type T=Int)

One or more superclasses of data objects may be defined to
simplify coding required to create data objects and incorpo-
rate additional structure into the IDIS. For example, one
superclass, “DataObject]” may be defined for creating data
objects having a data attribute set consisting of one data
attribute, and another superclass, “DataObject2” may be
defined for creating data objects having a data attribute set
consisting of two data attributes. In accordance therewith, one
or more classes of data objects are defined for each super-
class. Each class of data objects specifies a name and the data
attributes in the data attribute set. As noted above, instances of
the data objects (referred herein as “data objects™) are created
by selecting a data object class (e.g., specifying the name of
the data object class) and defining values for the data
attributes in that data attribute set. The creation and imple-
mentation of data object classes provides additional structure
to the IDIS.

30

35

40

45

50

55

60

65

8

In one example, a class of data objects having a set of data
attributes consisting of data attribute A is defined, in pseudo-
Scala, as follows:

class DO ,(args: Option[(String)|)

extends DataObject1[A](args){

def this()=this (None)

An exemplary class of data objects having a set of data
attributes consisting of data attributes A and B is defined, in
pseudo-Scala, as follows:

class DO ,(args: Option[(String, Int)])

extends DataObject2[A, B](args){

def this()=this (None)

Instances of the DO, and DO, classes are created and added
to the database, in pseudo-Scala, as follows:

val instanceDO ,=new DO ,(Some(blue))

repository.add(instanceDO ;)

val instanceDO , z=new DO, ,(Some(blue, 31))

repository.add (instanceDO)

As previously discussed in connection with FIGS. 1-3, the
IDIS includes data analysis tools (DATs) which each define
data object criteria and, when executed, analyze data objects
matching the data object criteria. In one embodiment, the data
object criteria indicates at least one data attribute (“reference
data attribute”), and the IDIS identifies data objects (e.g.,
instances of data objects) having a data attribute that matches
the reference data attribute for analysis by the DAT. In one
embodiment, the data object criteria establishes a specific
data attribute (e.g., ontology term, data attribute class, library
data attribute) as the reference data attribute. For example,
DAT , may define data attribute A (e.g., class A) as the refer-
ence data attribute. DO, and DO (i.e., instanceDO, and
instanceDO ;) match the reference data attribute since the
data attribute sets of both data objects include data attribute A.

Additionally or alternatively, the data object criteria for a
DAT may indicate the reference data attribute by specifying a
data object. The data attribute(s) of the specified data object
are the reference data attribute(s) associated with that DAT.
For example, DAT , may establish DO, (e.g., class DO) as
the data object criteria. The data attribute set for DO, consists
of data attribute A, so data attribute A is the reference data
attribute associated with DAT ;. DO, and DO _ (i.e., instance
DO, and instanceDO ;) match the reference data attribute
since the data attribute sets of both data objects include data
attribute A.

Additionally or alternatively, the data criteria for a DAT
may indicate a Boolean combination (e.g., AND, OR, NOT,
XOR, NAND) of reference data attributes. In this case, the
IDIS identifies data objects that have a data attribute set that
satisfies the Boolean combination of reference data attributes
for analysis by the DAT. For example, DAT ., may have data
object criteria that specifies data attribute C AND data
attribute D as the Boolean combination of reference data
attributes. DO, matches the Boolean combination of refer-
ence data attributes since the data attribute set for DO,
includes both data attribute C and data attribute D. Alterna-
tively, DAT ., may have data object criteria that specifies data
attribute C OR data attribute D as the Boolean combination of
reference data attributes. DO, matches the Boolean combi-
nation of reference data attributes since the data attribute set
for DO, includes at least one of data attribute C and data
attribute D.

The IDIS identifies a data attribute of a data object as
matching a reference data attribute if the data attribute of the
data object is identical (e.g., data attribute of the data object is
member of the reference data attribute class). In one embodi-

US 9,262,469 B1

9

ment, the IDIS also identifies the data attribute of the data
object as matching the reference data attribute if the data
attribute of the data object and the reference data attribute
have a semantic lexical relationship. For example, the data
attribute of the data object and the reference data attribute are
considered to match if the data attribute and reference data
attribute have a cognitive synonym relationship, a hyponym/
hypernym relationship, or meronym/holonym relationship.

Additionally or alternatively, the IDIS may employ a map-
ping scheme that relates (e.g., maps) data attributes of the
IDIS together. For example, the mapping scheme may be
based on a semantic lexical relationship between the data
attributes in accordance with the above discussion, other
similarity/commonality between the data attributes, and/or a
user-defined relationship. In accordance therewith, the IDIS
identifies the data attribute of the data object as matching the
reference data attribute if the data attribute of the data object
is mapped to the reference data attribute.

DATs may be added to the system via user input. The user
input provides the instructions for defining the data object
criteria, analyzing an input data object, and generating a new
data object. Thus, the user input provides instructions estab-
lishing reference data object(s) and/or reference data
attributes, computations to perform with respect to an input
data object, and data attribute(s) and value(s) for assigning to
those data attribute(s) that define one or more output data
objects. When a DAT is submitted via user input to the IDIS,
it must be compiled in accordance with principles generally
known in the art, before it is executable by the IDIS. In one
embodiment, the IDIS validates the submitted DAT at com-
pile time by enforcing the ontology described above. In par-
ticular, the IDIS verifies that the reference data object(s)
and/or reference data attributes are data object(s) and/or data
attributes, respectively, that exist in the IDIS. Likewise, the
IDIS verifies that the data attribute(s) for the output data
object(s) exist in the IDIS, and that the value(s) for assigning
to the data attribute(s) satisfy any criteria that is specified by
those data attribute(s) existing in the IDIS (e.g., assigned
value is the programming data type specified by the data
attribute).

In accordance with the exemplary data attributes and data
objects illustrated in FIG. 4, in one example, the IDIS
includes library data attributes A, B, C, and D and have
computer programming data types assigned thereto as inte-
ger, string, a floating point, and a string, respectively. The
IDIS includes, among others, data object classes: class DO,
which requires instances to have a data attribute set that
explicitly includes only data attribute A; class DO,z which
requires instances to have a data attribute set that explicitly
includes only data attributes A and B; and class DO, which
requires instances to have a data attribute set that explicitly
includes only data attributes C and D. The data attribute sets
can include additional hidden data attributes (i.e., non-ex-
plicit data attributes).

An exemplary submitted DAT is defined as follows

Class DAT , extends DataAnalysisTool [DO ,]{//reference

DO
.. . def run (DataObject: DO,){ . . . } }/analysis steps
Repository.add (new DO, (Some (C, D)))//output DO

Since class DO, is the reference data object, at compile time,
the IDIS verifies that class DO, exists in the IDIS. In addition,
any data attributes that are specified by the DAT to be ana-
lyzed are verified as being data attributes for class DO . Thus,
in this case, the only data attribute that can be specified by the
DAT for input data object analysis is data attribute A. The
IDIS also verifies that class DO, exists since the submitted

10

15

20

25

30

35

40

45

50

55

60

65

10

DAT is coded to generate instances DO, and that data
attributes C and D are data attributes for class DO, data
objects.

By enforcing the ontology of'the IDIS, the validation mea-
sures provide system efficiency and prevent improper opera-
tions, errors, and crashes in the IDIS. Once the DAT is vali-
dated by the IDIS, the DAT is added to the IDIS and may be
executed. As such, the IDIS identifies matching data object
instances (DO, and DO_z) for the new DAT, and when
executed, the new DAT generates data object instance(s)
DO¢p.

In one embodiment, the IDIS comprises a memory and a
processor. The memory includes non-transitory computer
readable media for operating as a data store such that it can
store components of the IDIS including the data attributes, the
data objects, and the data analysis tools. Thus, the compo-
nents (e.g., data attributes, DOs, DATs) described above as
existing in the IDIS are those that are stored in a data store of
the IDIS. The memory includes non-transitory computer
readable media that store computer executable instructions,
in addition to those of the data analysis tools, for operating the
IDIS as described in the present disclosure. The memory may
include volatile and/or non-volatile memory, and may com-
prise internal storage media and/or external storage media.
Internal exemplary storage media include RAM, ROM,
EEPROM, flash memory and/or other internal storage media
known in the art. Exemplary external storage media include
memory sticks, CD-ROM, digital versatile disks (DVD),
magnetic cassettes, magnetic tape, magnetic disks and/or
other storage media known in the art.

The processor is configured to communicate with memory
via a wired or wireless connection and to execute the instruc-
tions stored in the memory. It should be noted that the pro-
cessor and the memory may comprise a plurality of proces-
sors and a plurality of memories. For example, in one
embodiment, the processor and the memory are a computer
cluster, which comprises a plurality of loosely connected
computing devices (e.g., processors and memories) that oper-
ate together such that they are viewed as a single system.

In general, the IDIS includes computer executable instruc-
tions for creating data objects via user/device input and
through the execution of DATs, and for executing the DATs.
As further detailed below, in one embodiment, the IDIS also
includes computer executable instructions for periodically or
continuously identifying matching data objects for the DATs,
scheduling execution of the DATs to analyze each of the
identified matching data objects, and querying data objects
based on user initiated search criteria.

Referring to FIG. 5, one embodiment of an implementation
of'the IDIS is generally indicated at 200. As explained above,
the IDIS comprises data objects (DOs) and data analysis tools
(DATs), each of which is a self-contained, distinct entity. In
the illustrated embodiment, the DOs are stored in a DO data
store 202 (e.g., one or more databases) and the DATs are
stored in a DAT database 204 (broadly, a data store). It is
understood that the DOs and DATs may be stored in the same
data store, that the DOs and DAT's may be stored in other types
of'data stores, beside databases 202, 204. In one non-limiting
example, the databases 202, 204 are part of a data manage-
ment system, such as schema-less data management system
as disclosed below.

As set forth above, each DO includes a set of one or more
data attributes, and each DAT defines data object criteria (e.g.,
one or more reference data attributes), analyzes one or more
DOs existing in the IDIS that satisfy the defined data object
criteria, and generates one or more new DOs as a function of
each analyzed data object. Based on this system model 100,

US 9,262,469 B1

11

the illustrated implementation of the IDIS generally includes
a listening and enqueing component 208 assigned to each
DAT in the database 204 for identifying DO(s) in the database
202 that satisfy the criteria of the corresponding DAT, a
collection 210 of DO(s) for each DAT that includes the DO(s)
identified by the corresponding listener, a dispatcher 212
assigned to each DAT for selecting a DO in the collection to
be analyzed by the corresponding DAT, and a task scheduler
214 for scheduling the DAT tasks on available nodes of a
computer cluster. It should be noted that although the com-
ponents are illustrated as separate entities, the components
are limited to such a configuration. The present invention
contemplates that the functions performed by a plurality of
the components may be performed by a single component,
and/or the functions performed by a single component may be
performed by multiple components.

In the illustrated embodiment, each DAT has one listening
and enqueing component 208 assigned to it, although it is
understood that more than one listening and enqueuing com-
ponent may be assigned to a single DAT, and/or one listening
and enqueuing component may be assigned to a plurality of
DATs. Each listening and enqueing component 208 operates
to automatically identify DOs in the database 202 that satisfy
the criteria set by the corresponding DAT. In particular, the
DOs each include a set of data attributes, and the DATs each
have one or more reference data attributes (i.e., criteria) asso-
ciated therewith. Accordingly, each listening and enqueing
component 208 automatically identifies (e.g., filters, queries,
etc.) DOs in the database 202 that have data attributes match-
ing the one or more reference data attributes associated with
the corresponding DAT. Each listening and enqueing compo-
nent 208 may be automatically generated (i.e., created and
executed) when the corresponding DAT is uploaded to the
IDIS. That is, the IDIS may include a listener-generating
software application, whereupon when a DAT is uploaded to
the IDIS, the listener-generating software application is auto-
matically executed to generate a listener that identifies DOs
for the newly added DAT based on the criteria set by the DAT.

In the illustrated embodiment, when a DO (“identified
DO”) in the database 202 is identified by the listening and
enqueing component 208 as satisfying the data object criteria
set by the corresponding DAT, the listening and enqueuing
component saves a task object in the corresponding collection
210 associated with the DAT. Each collection 210 may be its
own database or may be logically separate from the other
collections. The task object includes the ID of the identified
data object (i.e., a pointer to the data object) and the ID of the
particular DAT (i.e., a pointer to the DAT). The listening and
enqueing component 208 also assigns an approximate
sequence number to the task object, and the task object is
enqueued in the collection 210, with respect to other task
objects in the corresponding collection, based on its approxi-
mate sequence number. In one embodiment, the listening and
enqueing component 208 reads the queue 211 of task objects
in the collection 210 and assigns an approximate sequence
number to a new task object based on the last (i.e., the largest)
approximate sequence number in the queue that is read by the
listening and enqueuing component. In one example of this
embodiment, the collection 210 is a database, reads of which
may be in parallel, to allow for non-blocking enqueuing into
the queue, but writes to which are serialized. Accordingly, the
queue reads by the listening and enqueing component 208
may be stale, and as such, the task objects in the queue 211
may have the same approximate sequence number.

In another embodiment, the listening and enqueing com-
ponent 208 assigns approximate sequence numbers to the
task objects based on an order in which the identified data

10

15

20

25

30

35

40

45

50

55

60

65

12

objects were identified by the listening and enqueing compo-
nent 208. In yet another embodiment, the listening and enque-
ing component 208 assigns approximate sequence numbers
to the task objects based on an order in which the identified
data objects were stored in the IDIS. In another embodiment,
the listener assigns approximate sequence numbers to the task
objects based on size required for the storing each of the
identified data objects in the database. In yet another embodi-
ment, the listening and enqueing component 208 assigns
approximate sequence numbers to the task objects based on
total number of prior accesses by a DAT for each of the
identified data objects. In another embodiment, the listening
and enqueing component 208 assigns approximate sequence
numbers to the task objects based on, for each identified data
object of the collection 210, a cumulative total number of
generated result sets from a search (as explained below) in
which the identified data object is included. In yet another
example, where user-feedback is determined from the gener-
ated result sets, the listening and enqueing component 208
assigns approximate sequence numbers to the task objects
based on received user feedback. Other ways of ordering the
identified DOs to be analyzed by the corresponding DAT
associated with the collection 210 do not depart from the
scope of the present invention.

In one embodiment, each collection 210 may have a maxi-
mum size (i.e., a maximum memory allocation). In one
example, the maximum size of each collection 210 may be
dynamic, whereby the maximum size of the collection
changes, depending on pre-selected parameters. For example,
the maximum size of the collection 210 may be adjusted as a
function of a rate that the task objects are added to the col-
lection, and/or the maximum size of the collection may be
adjusted as a function of the rate that the task objects of the
collection are selected for analysis by the corresponding DAT.
Other parameters may be used for adjusting the maximum
size of the collection 210. It is also understood that the maxi-
mum size of each collection 210 may be static.

As set forth above, the task scheduler 214 schedules the
DAT tasks to be run on available nodes of a computer cluster
(illustrated as a cloud). The task scheduler 214 is in commu-
nication with the computer cluster and is notified when a node
becomes available. Once notified, the task scheduler 214
selects a DAT, using a predetermined scheduling methodol-
ogy, for execution on the available node. Any suitable sched-
uling method for allocating and/or ordering processing time
to the respective DATs, relative to the other DATSs, may be
implemented. Suitable scheduling methodologies include
first in first out (FIFO) and shortest job first (SJF). In accor-
dance with the predetermined scheduling methodology, the
task scheduler 214 communicates with the dispatcher 212
that is assigned to the collection 210 that contains the DOs
that were identified in accordance with the selected DAT. The
task scheduler 214 communicates to the selected dispatcher
212 that the DAT associated with the dispatcher has been
selected to run on an available node.

Each dispatcher 212, when notified to do so by the task
scheduler 214, selects one task object (which relates to the
previously identified DOs) from the queue 211 in the collec-
tion 210 to be analyzed by the corresponding DAT. In one
embodiment, the dispatcher 212 selects a task object based on
the approximate sequence numbers assigned to the task
objects. For example, the dispatcher 212 may select the task
object that is next in line in the queue 211 based on the
approximate sequence numbers assigned to the task objects.
The selected task object from the queue 211 of task objects is
removed (e.g., logically removed) from the queue. In one
example, the dispatcher 212 requests a predefined number of

US 9,262,469 B1

13

task objects from the queue 211 based on the approximate
sequence numbers assigned to the task objects. For example,
during an initial request, the dispatcher 212 may request ten
(10) task objects that are next in line the queue 211. This is
done to facilitate the selection process, since the reads by the
dispatcher 212 may be stale, as explained above.

Upon selecting a task object from the corresponding col-
lection 210, the dispatcher communicates with the DO data-
base and the DAT database so that the selected DAT is run on
the available node of the computer cluster with the DO (i.e.,
“selected DO”) referenced by the selected task object as an
input DO. As set forth above, the result of the analysis of the
selected DO by the DAT is the generation of at least one
additional DO. This newly generated DO is saved to the DO
database and is available for identification by existing and
future listeners for analysis by the DATs. In addition to its
own unique ID, the newly generated DO includes the IDs of
each input DO used by the DAT that created the newly gen-
erated DO. As explained below, this data lineage is used when
searching (i.e., querying) the DO database 202.

A working example of the IDIS implementation in FIG. 5
will now be disclosed. In this example, all DOs and DAT's are
stored in a schema-less (or NoSQL) data management system
called Apache CouchDB (hereinafter, “CouchDB”). It is
understood that the IDIS may utilize other data management
systems and databases without departing from the scope of
the present invention. The DOs and the DATs are stored in one
or more databases in CouchDB as JSON (JavaScript Object
Notation) documents. (CouchDB is referred to as a docu-
ment-oriented database because the data is stored as indi-
vidual documents.) Accordingly, the DOs and DATs include
data attributes and values associated with the data attributes.
Moreover, each DO and DAT has an ID attribute, and a unique
value associated with the ID attribute (i.e., a randomly gen-
erated sequence). For example, source code, in JavaScript, for
an exemplary DO may read as follows:

“id”: “04ae4502jhfdhgh . . . >,
“number”: “15”,
“color”: “Blue”

Using the above exemplary source code, the ID attribute is
indicated by the term “_id,” the value associated with the ID
attribute is “04ae4502jhfdhgh . . . ; the two data attributes are
“number” and “color,” and the values associated with the data
attributes are “15” and “Blue” respectively.

In one example, an application programming interface
(AP]) (e.g., Ektorp) is used to interface with CouchDB. For
example, the DOs can be added to the CouchDB database by
writing code (e.g., Java or Scala), as set forth above, so that
the API can map the code (e.g., object relational mapping) as
a JSON document in the database. The same can be done for
DATs, wherein DATs are added to the CouchDB database by
writing code (e.g., Java or Scala), as set forth above, so that
the API can map the code (e.g., object relational mapping) as
a JSON document in the database. A repository layer can also
be built over the API, as is generally known in the art.

When adding a DAT to the IDIS, a listening and enqueuing
component may be automatically initiated. In this example,
the listening and enqueuing component includes a filter func-
tion, which subscribes to the data attributes that are indicated
by the reference data attributes of the DAT. The filter function
of'the listener identifies DOs having data attributes that match
the reference data attributes associated with the particular
DAT (as disclosed above herein), and then saves instances of
the identified DOs to a staging database. It is understood that

10

15

20

25

30

35

40

45

50

55

60

65

14

in one embodiment the staging database may be omitted. The
following is code, written in JavaScript, for an exemplary
filter function:
function(doc){
return(
doc.attribute A !==undefined &&
doc.attributeB !==undefined & &)

)
}

The listening and enqueuing component also includes a
task queuing function. The task queuing function of the lis-
tener automatically generates the task objects based on the
DOs in the staging database within CouchDB. In particular,
the listening and enqueuing component generates task objects
that include the ID (i.e., the value associated with the “_id”
attribute) of the identified DO and the ID (i.e., the value
associated with the “_id” attribute) of the associated DAT.
The listening and enqueuing component reads the queue of
task objects in the collection database and assigns an approxi-
mate sequence number to each new task object based on the
last (i.e., the largest) approximate sequence number in the
queue that is read by the listening and enqueuing component.
The queue reads by the listening and enqueuing component
may be stale, and as such, the task objects in the queue may
have the same approximate sequence number.

A task scheduler schedules the tasks to be run on available
nodes of a computer cluster, and dispatchers, each of which is
assigned to a collection database, retrieve the task objects
from the collection database. The task scheduler is in com-
munication with the computer cluster and is notified when a
node becomes available. Once notified, the task scheduler
selects a DAT, using a predetermined scheduling methodol-
ogy, for execution on the available node. Suitable scheduling
method for allocating and/or ordering processing time to the
respective DATs, relative to the other DATs are set forth
above. In accordance with the predetermined scheduling
methodology, the task scheduler communicates with the dis-
patcher that is assigned to the collection database that con-
tains the DOs that were identified in accordance with the
selected DAT. The task scheduler communicates to the
selected dispatcher that the DAT associated with the dis-
patcher has been selected to run on the available node.

Each dispatcher, when notified to do so by the task sched-
uler, selects one task object (which relates to the previously
identified DO) from the queue in the collection database to be
analyzed by the corresponding DAT. The dispatcher selects
the task object that is next in line in the queue based on the
approximate sequence numbers assigned to the task objects.
The selected task object from the queue of task objects is
removed (e.g., logically removed) from the queue. In one
example, the dispatcher requests a predefined number of task
objects from the collection based on the approximate
sequence numbers assigned to the task objects. For example,
during an initial request, the dispatcher may request ten (10)
task objects that are next in line the queue. This is done to
facilitate the selection process, since the reads by the dis-
patcher may be stale because the tasks have already been
claimed. Upon selecting a task object from the corresponding
queue, the selected DAT is run on the available node of the
computer cluster with the selected DO (as referenced by the
task object) as an input. The result of the analysis of the
selected DO by the DAT is the generation of at least one
additional DO. This newly generated DO is saved to the DO
database and is available for identification by existing and
future listeners for analysis by the DATs.

In one example, the illustrated implementation 200
includes the DOs and DATs shown in FIG. 2 and executes the

US 9,262,469 B1

15

interactions indicated by the connection lines shown therein.
In accordance therewith, each of the data objects (DO g,
DO, DO, DO, DOy, DO, DO, DO,,, DO,, DO,, and
DOg;,) includes an ID (respectively, ID-DO _z, ID-DO ,, ID-
DO, ID-DOp, ID-DO,, ID-DO,, ID-DO,, ID-DO,,, ID-
DOy, ID-DO;, and ID-DO ;) for uniquely identifying itself
from each other data object existing in the IDIS. In one
embodiment, in addition to its own unique ID each particular
data object includes the IDs of each data object that is an
ancestor of the particular data object. Thus, each particular
data object includes its own ID and the IDs of each input DO
used by each DAT in the workflow to create the particular data
object. For example, DOy includes its own unique ID (ID-
DOg) and the IDs of DO, DO, and DO, (ID-DO_p,
1D-DO, ID-DO 5, respectively) because they were the input
objects for DAT ., and DAT , which form the workflow that
created DO,. DOGH includes its own unique ID (ID-DO ;)
and the IDs of DOy, DO,p, DO, and DO, (ID-DO,, ID-
DO,p, ID-DO, ID-DO , respectively) because they were
the input objects for DAT ., and DAT , which form the work-
flow that created DOy

In this example, all of the DOs are full text searchable. In
one embodiment, the IDIS also includes a searcher 220 that
searches (i.e., queries) the DO database 202 as a function of
search criteria generated in response to user-input search
data. The user communicates with the DO database 202, and
vice versa, via a user interface 220 (e.g., a graphical user
interface). For example, the searcher 220 queries the DO
database 202 for all DOs having text that match search criteria
(referred to as primary DOs). The unique ID (referred to as
primary ID) of each of the primary DOs is identified. The
IDIS then searches the DOs in the database for DOs that
include the primary ID. The set of search results includes the
primary DO and each data object identified as including the
primary ID. In accordance with the above discussion, each
child of the primary data object will include the primary ID.
Thus, the set of search results includes the primary DO and
each data object that is a child of the primary DO. So, if DO,
matches the search criteria, the set of search results include
DO and DO 4, since these are the DOs that include ID-DO,.
Alternatively stated, DOy, is the primary DO and DO is a
child DO of DO,. In an alternative embodiment, in addition to
its own unique ID, each of the data objects includes the IDs of
only the input DOs used by the DAT that directly generated
the data object. Thus, DO, includes its own ID (ID-DO),
and the IDs of DO, and DOz, ID-DO, and ID-DO £, since
they were input DOs for DAT , which created DO ,. DO and
DO include their own IDs (ID-DOand ID-DO,), and the ID
of DO, (ID-DO,) since it was an input DO for DAT .,
which created DO, and DOg. DO, includes its own 1D
(ID-DOgy), and the ID for DO, (ID-DOy) since it was the
input DO for DAT_,; which created DO.

Once a primary DO is identified as matching the search
criteria, the ID of the primary DO is identified (referred to as
primary ID). Thus, if the DO, matches the search criteria, it is
a primary DO, and ID-DOy is the primary ID. The IDIS then
searches the DO database 202 for all DOs (referred to as
attenuated DOs) that include the primary ID, and identifies
the IDs (referred to as attenuated IDs) included in those
attenuated DOs. Thus, according to the example, data object
DO 4, 1s an attenuated DO because it includes the primary 1D,
ID-DOg. The ID of the attenuated DO(s), in this case 1D-
DO 4, 1s then identified.

The IDIS iteratively searches for DOs having identified
attenuated IDs until the attenuated DO(s) are DOs whose own
ID is not included in any other DO that has not already been
identified (i.e., the youngest child(ren) DOs are identified).

5

10

15

20

25

30

35

40

45

50

55

60

65

16

According to the example, DO, is the youngest child since
there are no other illustrated DOs including the IDs of this
DO. The primary DOs and the attenuated DOs form the set of
search results. Thus, despite the different data lineage
schemes used in this example and the prior example, the set of
search results is the same. Accordingly, the self-assembling
DATs of the IDIS enable a search for one DO relating to a
search to find each DO in the workflow. As such, an aggregate
work product, the possibility of existence of which is com-
pletely unknown to a user, may be provided from a search
related to an initial or intermediate data object.

FIG. 6 illustrates a workflow for predicting toxins that is
generated in accordance with an embodiment of the inven-
tion. The workflow is comprised of a plurality of independent
processes. Each process comprises identifying from a poten-
tially large data store, such as a database, a particular data
objectas an input data object for a particular DAT, and execut-
ing the DAT to generate a separate data object as an output
data object. The processes, and thereby the DATS, link them-
selves together when the output data object generated in one
process is used as an input data object for another process.
Thus, a series of processes P(x), where x=1,2...n,and nis
the total number of processes in the series, self assemble
when a first process P(1) identifies the input data object for the
DAT of that process, and each subsequent process P(x) (for
x>1) identifies as an input data object, the data object that was
generated as an output object from process P(x-1). This is an
example of a simple linear worktlow, but the system is not
restricted to this case. In general the system can self assemble
an arbitrarily complicated web of processes, including
branching, fan-in and fan-out, and cycles.

In accordance with the illustrated workflow, three indepen-
dent DATs (i.e., Genome Assembler, Gene Predictor, and
Toxin Predictor) are stored in a data store where they are
accessible for executing as independent processes (i.e.,
Genome Assembler process, Genome Predictor process, and
Toxin Predictor process). As explained in detail below, when
a Raw Reads data object, which includes raw data from a
DNA sequencer, is entered into the data store, the three inde-
pendent processes (Genome Assembler process, Genome
Predictor process, and Toxin Predictor process) self assemble
so that at least one predicted toxin can be predicted from the
Raw Reads data object.

As described above in the present disclosure, in one
example a DAT listener is assigned to each DAT by the
processor. Each DAT listener automatically filters the data
objects in the data store based on the data attributes matching
the one or more reference data attributes associated with the
corresponding DAT and that have not yet been acted on or
analyzed by the corresponding DAT. These filtered data
objects are collected and enqueued, awaiting their turn to be
processed by instances of the DAT. A multi-threaded or com-
pute cluster implementation can run many instances each of
many different DATs simultaneously. It is envisioned that in
at least one embodiment of the current invention that the data
analysis system will include numerous DATSs vying for pro-
cessing time on a computer cluster. For purposes of this
example, any suitable scheduling method for allocating pro-
cessing time to the respective DATs, relative to the other
DATs, may be implemented. Moreover, it is also envisioned
that the numerous data objects are also vying to be acted on or
analyzed by the DATs. For purposes of this example, any
suitable scheduling methods for prioritizing the processing of
respective data objects (Ex: First In First Out or “FIFO”),
relative to the other data objects, may be implemented.

Referring still to FIG. 6, the Raw Reads data object con-
tains information relating to numerous raw DNA reads gen-

US 9,262,469 B1

17

erated by sequencing a longer strand of DNA from a selected
species (e.g., human, a type of bacteria, a type of plant, etc.)
using a DNA sequencer, such as the Illumina HiSeq
sequencer, that performs shotgun sequencing. The raw DNA
reads (i.e., raw reads) are short fragments of the longer strand
of DNA that are sequenced by the sequencer. As with the
other data objects utilized by the data analysis system, the
Raw Reads data object from the selected species is stored in
the data store, such as a CouchDB database (or other similar
data management system), as set forth in the above disclo-
sure. In a document-oriented database such as CouchDB or
MongoDB, the Raw Reads data object (and all other data
objects in the data store) may be stored as documents, such as
JSON documents. In a relational database, these may be
stored as rows in a table. Each document includes a unique
identification string (i.e., a stored ID including a sequence of
characters), which may be assigned by the data store (or auser
ora DAT)when the data object is uploaded and/or saved to the
data store, a data attribute set, and some value (e.g., a particu-
lar integer, a particular string, a particular array, etc.) associ-
ated with each data attribute. As set forth in the above disclo-
sure, the data attributes for any data object may be constrained
by a predefined ontology.

In the illustrated flow diagram, the data attribute set of the
Raw Data Reads the data object, as well as each other data
object, is listed in the corresponding box, below the data
object name. In the illustrated example, the Raw Reads data
object includes the following data attributes: Libraryln-
sertLength, ReadlFastQAttachmentName,
Read2FastQAttachmentName, Species, and Accession. The
Raw Reads data object may include additional data attributes.
The value associated with the data attribute Libraryln-
sertLength relates to the length of the sheared collection ofthe
raw DNA strands, from which the smaller reads are produced.
The values associated with the Read1FastQAttachmentName
and the Read2FastQAttachmentName attributes relate to all
of'the DNA sequences of the raw reads generated by the DNA
sequencer. The attributes Species and Accession have values
for identifying the species and subspecies of the DNA that
was sequenced. Because the Raw Reads data object is
uploaded data from an external source (i.e., data that is
uploaded to the data store from outside the data analysis
system and is not generated from a DAT within the system),
the selected data attributes may be manually associated with
the Raw Reads data object when the Raw Reads data object is
uploaded into the data store. For example, a user (e.g., the
person uploading the data object) may chose the data
attributes from a plurality of data attributes stored in the
ontology store, as described above in the present disclosure.

In the illustrated example, the DAT entitled “Genome
Assembler (DAT)” is executed by the processor. The Genome
Assembler DAT subscribes to the Raw Reads data object and
analyzes the Raw Reads data object to generate a plurality of
data objects each entitled Contig DNA Sequence (Data
Object). The Genome Assembler DAT (as with all DATs in
this example) is associated with a reference data attribute set,
which includes one or more reference data attributes. These
reference data attributes are selected from the plurality of data
attributes stored in the ontology store (the same data store
from which the data attributes of the data objects are chosen),
and are associated with a corresponding DAT when the DAT
is created. That is, the creator of the DAT selects reference
data attributes from the plurality of data attributes of the
ontology to form a reference data attribute set. The reference
data attributes of the reference data attribute set will deter-
mine the data objects to which the corresponding DAT sub-
scribes. Inthe present example, the reference data attribute set

30

35

40

45

50

55

60

65

18

associated with the Genome Assembler DAT includes the
reference data attributes Read1FastQAttachmentName and
Read2FastQAttachmentName. The Genome Assembler DAT
performs an operation on (e.g., analyzes) the Raw Reads data
object because the Raw Reads data object includes data
attributes that match each of the reference data attributes
associated with each of the Genome Assembler DAT. (though
the data object may additionally have data attributes and
values beyond those required by the subscription).

In this example, the Genome Assembler DAT subscribes to
a data object (any data object in the data store) if and only if
the data attribute set of the data object includes data attributes
that match each and every reference data attribute associated
with the Genome Assembler DAT. The same holds true for
each DAT in this example. As can be seen from this present
example, the Raw Reads data object includes data attributes
that do not match the reference data attributes associated with
the Genome Assembler DAT, but the Genome Assembler
DAT subscribes to the Raw Reads data object because each
and every reference data attribute in the respective reference
data attribute set is matched to a corresponding data attribute
of'the data object. In effect, the reference data attribute sets in
this example are somewhat analogous to a Boolean search
combination using the AND operator where objects are
matching if they have at least that Boolean expression. That
is, a match is identified if the data attribute(s) of the data
object matches all reference data attributes of the DAT,
regardless of whether the data object includes additional,
non-matching data attributes. It is understood, as set forth
above in the present disclosure, that the reference data
attribute set may include reference data attributes connected
(either explicitly or functional) by Boolean operators, such as
OR, XOR, NAND and NOT. Moreover, as also set forth
above, a “match” may be determined by identitying some
semantic lexical relationship between the data attribute and
the reference data attribute, such that the data attribute and the
reference data attribute match even though they are not iden-
tical (e.g., the data attribute and reference data attribute may
have a cognitive synonym relationship, a hyponym/hyper-
nym relationship, or meronym/holonym relationship).

As set forth above, the Genome Assembly DAT generates
a plurality of Contig DNA Sequence data objects. The
Genome Assembly DAT includes a set of instructions or
algorithms for analyzing the Raw Reads data object to gen-
erate the Contig DNA Sequence data objects. In general, the
Genome Assembly DAT analyzes the values associated with
the Read1FastQAttachmentName and
Read2FastQAttachmentName data attributes from the Raw
Reads data object to determine overlapping DNA segments
(referred to as “contigs™) that constitute consensus regions of
the DNA that was sequenced. Determining contigs is a known
process involving the re-assembly of the small DNA frag-
ments (i.e., DNA reads) that were sequenced using shotgun
sequencing, for example. In one embodiment, the Genome
Assembly DAT may utilize an external software program
(e.g., a UNIX or web-based program) that generates the con-
tig data. The Genome Assembly DAT uses the outputted
contig data from the external software program to generate
the Contig DNA Sequence data object. Each Contig DNA
Sequence data object includes the data attributes Nucle-
otideSequence, Length, and Name, among others, each of
which has a value (e.g., a particular integer or a particular
string) associated with it. The NucleotideSequence data
attribute has a value relating to the DNA sequence of the
generated contig. The Length attribute has a value relating to
the length of the contig sequence, and the Name attribute has
a value relating to a name of the contig sequence. As with all

US 9,262,469 B1

19
DATSs, the Genome Assembler DAT determines the attributes
that are included in the Contig DNA Sequence data objects.

Referring to FIG. 7, in one example the Gene Assembler
DAT also generates a Reference Genome data object. The
Reference Genome data object functions as a container data
object that stores all of the IDs of the Contig DNA Sequence
data objects generated by the Gene Assembler DAT from the
Raw Reads data object. The stored IDs of all of the Contig
DNA Sequence in the Reference Genome data object func-
tion as pointers, which point to the Contig DNA Sequence
data objects that were generated from a corresponding Raw
Reads data object. In this way, the entire DNA sequence or
genome that was sequenced is accessible from a single data
object (e.g., JSON document).

Referring back to FIG. 6, the DAT entitled “Gene Predictor
(DAT)” acts on or analyzes the Contig DNA Sequence data
objects to generate data objects entitled “Predicted Gene
(Data Object).” The Gene Predictor DAT subscribes to Contig
DNA Sequence data objects because the data attribute Nucle-
otideSequence, in each of the data attribute sets of the Contig
DNA Sequence data objects, matches the reference data
attribute NucleotideSequence associated with the Gene Pre-
dictor DAT. In the illustrated flow diagram, the Gene Predic-
tor DAT is shown acting on or analyzing only one Contig
DNA Sequence data object to generate a single Predicted
Gene data object. It is understood that the Gene Predictor
DAT may analyze the other Contig DNA Sequence data
objects (and possibly other types of “matching” data objects)
during other runs of the DAT.

The Gene Predictor DAT includes a stored set of pro-
grammed instructions or algorithms for analyzing the
selected Contig DNA Sequence data object to generate the
Predicted Gene data object. In general, the Gene Predictor
DAT analyzes the value associated with the NucleotideSe-
quence attribute (which contains information relating to the
contig sequence) in the selected DNA Sequence data objectto
predict one or more genes that is encoded in the contig DNA
sequence, if any such genes are present in that contig DNA
sequence. The Gene Predictor DAT may include any one of a
number of algorithms by which a gene contained within the
selected contig DNA sequence is predicted. Known, non-
limiting examples of such gene prediction algorithms include
Prodigal, Augustus, FGenes. Moreover, as with the Gene
Assembly DAT, the Gene Predictor DAT may utilize an exter-
nal software program (e.g., UNIX or a web-based program)
that generates the predicted gene data.

The Predicted Gene data object includes information relat-
ing to a gene that is predicted to be encoded in the selected
contig DNA sequence contained in the Contig DNA
Sequence data object. The Predicted Gene data object
includes the data attributes PredictionMethod, AminoAcid-
Sequence, Name, and Length. The value (e.g., a particular
string) associated with the PredictionMethod attribute pro-
vides information regarding the prediction method that was
used to generate the Predicted Gene data object. The value
(e.g., a particular string) associated with the AminoAcidSe-
quence attribute provides information relating to the amino
acid sequence encoded by the predicted gene (i.e., the amino
acid sequence of the protein that is translated from the pre-
dicted gene). The value of the Name attribute relates to the
name of the predicted gene (this name can be created or
assigned from an ontology if the predicted gene is a known
gene), and the value (e.g., an integer) of the Length attribute
provides information relating to the length of the predicted
gene.

In the illustrated example, the DAT entitled “Toxin Predic-
tor (DAT)” acts on or analyzes the Predicted Gene data object

10

20

25

30

35

40

45

50

55

60

65

20

to generate the data object entitled “Predicted Toxin (Data
Object).” The Toxin Predictor DAT subscribes to the Pre-
dicted Gene data object because the data attribute AminoAc-
idSequence included in the Predicted Gene data object
matches the reference data attribute AminoAcidSequence
associated with the Toxin Predictor DAT. In the illustrated
example, the Toxin Predictor DAT is a querying DAT, which
is a DAT that queries one or more 3rd party data objects to
obtain information that is used to analyze the selected data
object. In the illustrated example, the Toxin Predictor DAT
queries from the set of data objects entitled “Library of
Known Toxins (Data Objects).” The Library of Known Toxins
data object contains information relating to known toxins,
which, in the illustrated example, includes hidden Markov
model (HMM) profiles of known toxin families. In general,
the Toxin Predictor DAT makes a homology-based analysis of
the predicted gene using the value associated with the Ami-
noAcidSequence data attribute of the selected Predicted Gene
data object and the HMM profiles in the Library of Known
Toxins data object. The Toxin Predictor queries the Library of
Known Toxins data object to compare the amino acid
sequence encoded by the predicted gene to the HMM profiles,
and calculates an E-value for each returned HMM profile. The
E-value is based on the probability that the amino acid
sequence is a homolog of the returned HMM profile.

The Predicted Toxin data objects include information relat-
ing to a toxin (from the Library of Known Toxins) that may be
a homolog of the protein (i.e., amino acid sequence) that is
encoded by the predicted gene. In the illustrated embodiment,
a single Predicted Toxin data object is generated from the
Toxin Predictor DAT based on the selected Predicted Gene
data object. However, it is understood that more than one
Predicted Toxin data object may be generated from the Toxin
Predictor DAT based on a single Predicted Gene data object.
That is, the Toxin Predictor DAT may determine that more
than one toxin from the Library of Known Toxins data object
is homologous to the amino acid sequence data included in
the Predicted Gene data object. The Predicted Toxin data
object includes the following data attributes: EValue and Pro-
fileHMMId. The ProfileHMMId data attribute is the ID of the
profile HMM (hidden Markov model) profile that was
returned based on the comparison of the predicted amino acid
sequence to the HMM profiles in the Library of Known Tox-
ins. In essence, the ProfileHMMId is a pointer that points to
the location of a data object containing the returned HMM
profile. The value associated with the EValue data attribute is
the calculated E-value of the comparison between the pre-
dicted amino acid sequence and the returned HMM profile,
which signifies the probability that the returned HMM profile
is a homolog of the predicted amino acid sequence.

As with the Genome Assembly DAT, in one example the
Toxin Predictor DAT generates a plurality of Predicted Toxin
data objects. As such, a separate data object (e.g., JSON
document) may be created to function as a folder or container
data object that stores all of the IDs of the Predicted Toxin
data objects generated by the Toxin Predictor DAT from the
Contig DNA Sequence data object. The stored IDs of all of
the Predicted Toxin data objects in the file data object func-
tion as pointers, which point to the Predicted Toxin data
objects that were generated from a corresponding Contig
DNA Sequence data object. In this way, all of the toxins that
were predicted from the corresponding Contig DNA
sequence data object are accessible from a single data object
(e.g., JSON document).

Referring to FIG. 8, an additional DAT entitled “Read
Quality (DAT)” subscribes to and analyzes the Raw Reads
data object (the same one from FIG. 6) to generate a data

US 9,262,469 B1

21

object entitled “Quality Score Report (Data Object).” The
Read Quality DAT subscribes to the Raw Reads data object
because the data attribute set of the Raw Reads data object
includes data attributes that match each and every reference
data attribute (i.e., ReadlFastQAttachmentName and
Read2FastQAttachmentName) associated with the Quality
Score Report DAT. Thus, as shown in FIG. 8, two DATs (i.e.,
the Read Quality DAT and the Genome Assembler DAT)
subscribe to and analyze the same data object (i.e., Raw Reads
data object). It is understood that other DATs may also sub-
scribe to the Raw Reads data object.

The Read Quality DAT includes a set of programmed
instructions for analyzing the Raw Reads data object to gen-
erate the Quality Score Report data object. The Read Quality
DAT, as with all DATs, may be run on a processor in a
computer cluster, as set forth above. In general, the Read
Quality DAT analyzes the values associated with the
Read1FastQAttachmentName and
Read2FastQAttachmentName data attributes, according to
the set of programmed instructions, to determine the quality
of the raw reads generated by the DNA sequencer. In this
example, the Read Quality DAT analyzes the values associ-
ated with the data attributes that match the reference data
attributes associated with the Read Quality DAT, although it
is understood that the DATs may analyze values associated
with other data attributes other than those that match the
reference data attributes associated with the corresponding
DAT.

The Quality Score Report data object includes the data
attributes QualityScoreDistribution and Total Score, each of
whichhas avalue (e.g., a particular integer) associated with it.
The values associated with both the QualityScoreDistribution
and Total Score attributes relate to the quality of the raw reads.
As with all DATs, the Read Quality DAT determines the
attributes that are included in the Quality Score Report. The
determination of which attributes will be included in a data
object that is outputted by a DAT is made when creating the
DAT. In this example, no other DATs act on the Quality Score
Report data object, so it may be considered an end-product
data object. It is understood that the data analysis system may
include other read quality DAT's that subscribe to other data
objects to analyze the quality of the data included in the
respective data objects.

It is envisioned that IDIS, as disclosed above, may be
employed in many different industries and fields, particularly
those dealing with large amounts of data. IDIS can be
employed to integrate, process, and analyze large amounts of
data in an efficient, cost-effective manner. Below are non-
limiting examples highlighting potential uses of IDIS in
respective industries and fields.

Military/Intelligence: In another embodiment, there are
significant defense/national security applications for IDIS
including the effects of various troop deployment strategies
intersected with various military response models. More
saliently, data objects could be created for surveillance data
collected from analysts, informants, financial transactions,
satellite and drone imagery as well as other data sources to
quantify and predict military and terrorist threats on a
national or even local level. DATs can be developed to run
object and feature detection on imagery, identify aberrant
patterns in financial data and correlate these detected features
with each other to identify, verify and quantify terrorist activ-
ity. Outputs could include models identified as highly predic-
tive or specific predictions about current threats.

Insurance/Actuarial Science: In another embodiment, ana-
Iytical tools for measuring health care or business practices
for the area of insurance implicates, statistics, prior history as

10

15

20

25

30

35

40

45

50

55

60

65

22

well as relevant risk management efforts in a given field of
endeavor would be utilized in IDIS to improve the generation
of'probability analysis which informs underwriting activities.
Relative to health insurance public and private data from
previous health care outcomes, health care provider records
in a given treatment regimen could be included along with
genetic information from subscribers to assist in the genera-
tion of more useful models that can assist in underwriting
activities. DAT's can be developed to perform needed financial
modeling, statistical analysis needed to inform actuarial deci-
sions.

Social Media Analytics: In yet another embodiment, IDIS
can be used to identify micro-demographics that respond
differentially to advertisements so that advertisers could real-
ize more value from their efforts by more precise content
targeting and/or better target identification. User profiles,
tweets, blogs, demographics, real estate records, and other
publicly available information could be modeled as data
objects along with click-through, served advertisement, and
purchase histories as well as available private data. IDIS
would then allow DATs to aggregate data from users who do
and do not respond in various ways to different advertising
efforts. DATSs could extract salient words or topics from pro-
files, tweets, etc as well as from advertisements and the
webpages of advertisers to make targeted content more
acceptable and/or desirable to potential and/or targeted con-
sumers. High performing ads or topics could be identified by
DATs. To identify micro-demographics, DATs could be cre-
ated to associate the topics differentially represented in data
derived from users with topics differentially represented in
data derived from advertisements. DATs could compile these
findings into prescriptions for more precisely targeted adver-
tising.

Operations Research/Dynamic Pricing/Revenue Manage-
ment: There are a variety of uses for IDIS in dynamic pricing
type systems, the most famous of which is the highly specific
and continual re-pricing of airline tickets. Historical data on
the number of available sets, price history for all seats, and the
network of flights between cities could be modeled as data
objects. DATs could compute the total profit generated for
each flight, and other DAT's could compute salient features of
these price histories, such as whether the flight eventually
sells out, the historical progress of marginal purchases by
time until the flight, passenger histories, percentage of pur-
chases with the target city as a final destination, and the
percentage of tickets purchased in each fare class. Further
DATs could correlate these features to more and less profit-
able flights. DATs could build various models of consumer
behavior, and further DATSs could use the more and less prof-
itable flight features to suggest and simulate alternative pric-
ing strategies relative to each of these consumer behavior
models.

Drug Discovery/Therapeutics: Public and private data
from human genome wide association studies (GWAS),
mode of action studies, and other experiments can be mod-
eled in IDIS as data objects. DATs could be developed to
perform the GWAS analysis to associate traits, phenotypes, or
biomarkers with genotypes. Further DATSs could functionally
annotate the genes in these trait-associated intervals. DATs
and public data could be used to produce and rank predictions
of genes in these intervals most likely to be causative for a
given pathology. Public and private data on small molecule-
protein binding and protein-protein binding could be used to
annotate genes or reactions susceptible to intervention by
small-molecule based therapies and identify potential mol-
ecules to actuate those therapies. Finally, data from clinical
trials could be modeled in the system along with collected

US 9,262,469 B1

23

diagnostic and outcome data to be fed to DATs that can assess
the success of potential drug therapies, or multi-drug regi-
mens, predicted by previous stages of the analysis.

Medical Diagnostics/Personalized Healthcare: Patient
records, patient demographics, diagnostic tests (such as blood
pressure, blood glucose, genetic tests, MRI results, white cell
counts, etc), administered treatments, health outcomes, insur-
ance premiums, dietary information, patient genetics and
expenditures could be modeled in IDIS as data objects. DATs
could compute the expected marginal insurance payouts con-
ditional on the each individual and baskets of diagnostic
outcomes, treatment selections, and health outcomes to iden-
tify opportunities to improve care. Additional DATs could
flag treatments that are significantly more effective given a set
of demographics and diagnostics. DAT's could identify those
diagnostics not universally applied but which reveal informa-
tion necessary to recommend specific treatments or individu-
alized treatment regimens with significantly different ulti-
mate expenditures. DATs could back-calculate the estimated
loss from foregone opportunities identified by the system, and
thus rank the important of implementing new guidelines or
policies to alter care to minimize costs and/or enhance out-
comes.

Computational Finance: IDIS could be used in computa-
tional finance for complex analysis tasks such as the design of
new derivative securities with complex yet-to-be-determined
risk and pricing, or the identification of arbitrage opportuni-
ties in the relative prices of historical securities. In the latter
example, historical stock, option, bond, warrant, and other
security prices at points in time would be modeled as data
objects. DATs could compute and store price movement pre-
dictions based on previous data for individual securities or
baskets of securities. Additional DATs could then relate the
actual and predicted price movements of individual securities
to others or to baskets of others to identify opportunities for
statistical arbitrage trading strategies. DATs could also be
constructed to assemble risk-efficient portfolios at points in
time using a variety of strategies, and other DATs could
evaluate the success of various strategies. SEC reporting or
newswire data could also be modeled as data objects. Security
valuation methods and implied trading strategies based on
these data could be encoded as DATSs and their relative per-
formance analyzed by other DATs.

It is contemplated that there could be other configurations
of the IDIS to implement the components and operations of
the system model noted above. Additionally, there are various
applications and industries, in addition to those discussed
herein, in which the IDIS may be used.

The order of execution or performance of the operations in
embodiments illustrated and described herein is not essential,
unless otherwise specified. That is, the operations may be
performed in any order, unless otherwise specified, and
embodiments may include additional or fewer operations
than those disclosed herein. For example, it is contemplated
that executing or performing a particular operation before,
contemporaneously with, or after another operation is within
the scope of aspects.

When introducing elements of aspects or the embodiments
thereof, the articles “a,” ““an,” “the,” and “said” are intended to
mean that there are one or more of the elements. The terms
“comprising,” “including,” and “having” are intended to be
inclusive and mean that there may be additional elements
other than the listed elements.

In view of the above, it will be seen that several advantages
are achieved and other advantageous results attained.

Not all of the depicted components illustrated or described
may be required. In addition, some implementations and

10

15

20

25

30

35

40

45

50

55

60

24

embodiments may include additional components. Variations
in the arrangement and type of the components may be made
without departing from the spirit or scope of the claims as set
forth herein. Additional, different or fewer components may
be provided and components may be combined. Alternatively
or in addition, a component may be implemented by several
components.

The above description illustrates by way of example and
not by way of limitation. This description enables one skilled
in the art to make and use the disclosure, and describes several
embodiments, adaptations, variations, alternatives and uses,
including what is presently believed to be the best mode of
carrying out the disclosure. Additionally, it is to be under-
stood that the disclosure is not limited in its application to the
details of construction and the arrangement of components
set forth in the following description or illustrated in the
drawings. The disclosure is capable of other embodiments
and of being practiced or carried out in various ways. In
addition, it will be understood that the phraseology and ter-
minology used herein is for the purpose of description and
should not be regarded as limiting.

Having described aspects in detail, it will be apparent that
modifications and variations are possible without departing
from the scope of aspects as defined in the appended claims.
As various changes could be made in the above constructions,
products, and methods without departing from the scope of
aspects, it is intended that all matter contained in the above
description and shown in the accompanying drawings shall be
interpreted as illustrative and not in a limiting sense.

What is claimed is:

1. A computer-executed method for self-assembling a plu-
rality of individual data analysis tools into a workflow, the
method comprising:

storing in a data store a plurality of data attributes for

defining one or more data objects;

storing in the data store a first data object having a first

attribute set comprising at least one first data attribute of
the plurality of stored data attributes and a value for said
at least one first data attribute;
storing in the data store a first data analysis tool (DAT), said
first DAT associated with at least one first reference data
attribute of the plurality of stored data attributes;

identifying said first data object based on each at least one
first reference data attribute matching one of the at least
one first data attribute of the first data attribute set and
independent of the value for the at least one first data
attribute of the first attribute set;

generating by said first DAT a second data object as a

function of the identified first data object, wherein said

second data object comprises a second attribute set com-

prising at least one second data attribute of the plurality

of stored data attributes, and a value for said at least one

second data attribute of the second attribute set;
storing the second data object in the data store;

storing in the data store a second data analysis tool (DAT),

said second DAT associated with at least one second
reference data attribute of the plurality of stored data
attributes;

identifying said second data object based on each at least

one second reference data attribute matching one of the
at least second first data attribute of the second data
attribute set and independent of the value for the at least
one second data attribute of the second attribute set;

generating by said second DAT a third data object as a

function of the identified second data object, wherein
said third data object comprises a third data attribute set
comprising at least one third data attribute of the plural-

US 9,262,469 B1

25

ity of stored data attributes, and a value for said at least
one third data attribute of the third attribute set; and
storing said third data object in the data store;

storing in the data store a plurality of other first data

objects, each of the plurality of other first data objects
having an attribute set comprising at least one data
attribute of the plurality of stored data attributes and a
value for said at least one data attribute;

identifying said other first data objects based on each at

least one first reference data attribute matching one of
the at least one data attribute of each data attribute set of
the other first data objects and independent of the value
for the at least one data attribute of each data attribute set
of' the other first data objects; and

defining a collection of identified first data objects that

includes the identified first data object and each of the
identified plurality of the other first data objects.

2. The method of claim 1 wherein said identifying said first
data object comprises determining that each of the at least one
first reference data attribute is identical to or has a semantic
lexical relationship with one of the at least one first reference
data attribute.

3. The method of claim 1 further comprising:

mapping a plurality of the stored data attributes together;

determining whether each at least one first reference data

attribute is mapped to one of the at least one first data
attribute, wherein the first data attribute matches the first
reference data attribute when the first data attribute is
determined to be mapped to the first reference data
attribute.

4. The method of claim 3 wherein mapping a plurality of
the stored data attributes together comprises mapping a plu-
rality of the stored data attributes together based on said
plurality of the stored data attributes having a semantic lexical
relationship.

5. The method of claim 1 wherein the first DAT is associ-
ated with the at least one first reference data attribute and an
other first reference data attribute, and wherein said identify-
ing said first data object comprises determining that a Bool-
ean combination of the at least one first reference data
attribute and the other first reference data attribute matches
the at least one first data attribute of the first data attribute set.

6. The method of claim 1 wherein the first data attribute set
comprises the at least one first data attribute and an other first
data attribute, and wherein the first DAT is associated with the
at least one first reference data attribute and an other first
reference data attribute, and wherein said identifying said first
data object comprises determining that a Boolean combina-
tion of the first reference data attribute and the other first
reference data attribute matches the at least one first data
attribute and the other first data attribute, in combination.

7. The method of claim 1 wherein said storing a first DAT
in the data store comprises:

validating said first DAT, wherein said validating includes

verifying that the at least one first data reference attribute
associated with said first DAT is one of the plurality of
data attributes stored in the data store;

compiling said first DAT; and

uploading the validated and compiled first DAT to the data

store.

8. The method of claim 1 wherein said first DAT is associ-
ated with a first reference data object, said first reference data
object having the at least one first reference data attribute.

9. The method of claim 8 wherein said first reference data
object is identical to the first data object and each at least one
first reference data attribute is identical to one of the at least
one first data attribute.

10

20

25

30

35

40

45

50

55

60

65

26

10. The method of claim 8 wherein said first reference data
object is different from the first data object and each at least
one first reference data attribute matches one of the at least
one first data attribute.

11. The method of claim 8 wherein said identifying said
first data object comprises determining that each ofthe at least
one first reference data attribute is identical to or has a seman-
tic lexical relationship with one of the at least one first refer-
ence data attribute.

12. The method of claim 8 further comprising storing a first
reference data object class in the data store, said first refer-
ence data object class defining requirements for instances of
first reference data objects, wherein said storing a first DAT in
the data store comprises:

validating said first DAT, wherein said validating includes

verifying that the at least one first reference data object

associated with said first DAT meets the requirements

for the stored first reference object class; and
compiling said first DAT;

uploading the validated and compiled first DAT to the data

store.

13. The method of claim 1 further comprising:

adding a new data object to the data store, said new data

object having a particular set of data attributes;

in response to said adding the new data object to the data

store:

determining whether each at least one first reference data

attribute matches one of the data attributes of the new
data object; and

determining whether each at least one second reference

data attribute matches one of the data attributes of the
new data object.

14. The method of claim 13 further comprising:

receiving a user-provided value;

querying the data store as a function of the user-provided

value to identify data attributes having values corre-
sponding to the user-provided value; and

generating a result set as a function of the querying, said

result set including data objects having the identified
data attributes.

15. The method of claim 1 wherein the identified first data
objects of the collection are approximately ordered for analy-
sis by the first DAT based on an order in which the identified
first data objects of the collection were stored in the data store.

16. The method of claim 1 wherein the identified first data
objects of the collection are approximately ordered for analy-
sis by the first DAT based on an order in which the identified
first data objects were identified.

17. The method of claim 1 wherein the identified first data
objects of the collection are approximately ordered for analy-
sis by the first DAT based on one of a size required for the
storing each of the identified first data objects in the data store,
and a total number of prior accesses by a DAT for each of the
identified first data objects.

18. The method of claim 1 further comprising:

receiving a user-provided value;

querying the data store as a function of the user-provided

value to identify data attributes having values corre-
sponding to the user-provided value; and

generating a result set as a function of the querying, said

result set including data objects having the identified
data attributes;

wherein said receiving, querying, and generating are per-

formed for each of a plurality of user-provided values.

19. The method of claim 18 wherein the identified first data
objects of the collection are approximately ordered for analy-
sis by the first DAT based on, for each identified first data

US 9,262,469 B1

27

object of the collection, a cumulative total number of gener-
ated result sets in which said identified first data object is
included.

20. The method of claim 18 further comprising:

defining a display set of data objects, wherein said display

set is a sub-set of the generated result set; and

rendering the display set of data objects for displaying to a

user.

21. The method of claim 20 wherein the identified first data
objects of the collection are approximately ordered for analy-
sis by the first DAT based on, for each identified first data
object of the collection, a cumulative total number of display
sets in which the identified first data object is included.

22. The method of claim 20 further comprising receiving
user-feedback for one or more data objects in the rendered
display set.

23. The method of claim 22 wherein the identified first data
objects of the collection are approximately ordered for analy-
sis by the first DAT based on the received-user feedback.

24. The method of claim 1 further comprising iteratively
selecting one identified first data object from the collection of
identified first data objects for analysis by the first DAT,
wherein the generating by said first DAT a second object as a
function of the identified first data object comprises generat-
ing by said first DAT, for each iteratively selected one iden-
tified first data object, a second data object as a function of the
selected one identified first data object.

25. The method of claim 24 further comprising in response
to selecting the one identified first data object from the col-
lection of identified first data objects, logically removing the
selected one identified first data object from the collection of
identified first data objects.

26. The method of claim 24 further comprising iteratively
identifying an additional other first data object and adding the
identified additional first data object to the collection of iden-
tified first data objects.

27. The method of claim 26 wherein the collection of
identified first data objects has a maximum size.

28. The method of claim 27 further comprising adjusting
the maximum size of the collection of identified first data
objects as a function of at least one of a rate that the first
additional first data objects are added to the collection of
identified first data objects, and a rate that the identified first
data objects of the collection of identified first data objects are
selected for analysis by the first DAT.

29. The method of claim 26 wherein adding the identified
additional first data object to the collection of identified first
data objects comprises concurrently adding the identified
additional first data object to the collection of identified first
data objects.

30. The method of claim 1 further comprising assigning a
sequence number to each of the identified first data objects of
the collection of identified data objects, wherein the assigned
sequence number defines an approximate order for analysis
by the first DAT.

31. The method of claim 30 wherein at least two of the
identified first data objects of the collection of identified first
data objects have the same assigned sequence number.

32. A system for self-assembling a plurality of individual
data analysis tools into a workflow, the system comprising:

at least one processor;

at least one data storage device storing computer execut-

able instructions for execution by the processor; said

data storage device:

storing a plurality of data attributes for defining one or
more data objects;

15

20

25

30

35

40

45

50

55

60

65

28

storing in the data store a first data object having a first
attribute set comprising at least one first data attribute
of'the plurality of stored data attributes and a value for
said at least one first data attribute;
storing in the data store a first data analysis tool (DAT),
said first DAT associated with at least one first refer-
ence data attribute of the plurality of stored data
attributes;
said computer executable instructions comprising:
instructions for identifying said first data object based on
each at least one first reference data attribute matching
one of the at least one first data attribute of the first data
attribute set and independent of the value for the at least
one first data attribute of the first attribute set;
instructions for generating by said first DAT a second data
object as a function of the identified first data object,
wherein said second data object comprises a second
attribute set comprising at least one second data attribute
of the plurality of stored data attributes, and a value for
said at least one second data attribute of the second
attribute set;

instructions for storing the second data object in the data

store;

instructions for storing in the data store a second data

analysis tool (DAT), said second DAT associated with at
least one second reference data attribute of the plurality
of stored data attributes;
instructions for identifying said second data object based
on each at least one second reference data attribute
matching one of the at least one second data attribute of
the second data attribute set and independent of the value
for the at least one second data attribute of the first
attribute set;
instructions for generating by said second DAT a third data
object as a function of the identified second data object,
wherein said third data object comprises a third attribute
set comprising at least one third data attribute of the
plurality of stored data attributes, and a value for said at
least one third data attribute of the third attribute set;

instructions for storing said third data object in the data
store;

instructions for adding a new data object to the data store,

said new data object having a particular set of data
attributes;

in response to said adding the new data object to the data

store:

instructions for determining whether each at least one
first reference data attribute matches one of the data
attributes of the new data object, and

instructions for determining whether each at least one
second reference data attribute matches one of the
data attributes of the new data object; and

instructions for assigning a sequence number to each of the

identified first data objects of the collection of identified

first data objects, wherein the assigned sequence number

defines an approximate order for analysis by the first

DAT.

33. The system of claim 32, wherein said instructions for
identifying said first data object comprises instructions for
determining that each of the at least one first reference data
attribute is identical to or has a semantic lexical relationship
with one of the at least one first reference data attribute.

34. The system of claim 32, said computer executable
instructions further comprising:

instructions for mapping a plurality of the stored data

attributes together;

US 9,262,469 B1

29

instructions for determining whether each at least one first
reference data attribute is mapped to one of the at least
one first data attribute, wherein the first data attribute
matches the first reference data attribute when the first
data attribute is determined to be mapped to the first
reference data attribute.
35. The system of claim 32, wherein said first DAT is
associated with a first reference data object, said first refer-
ence data object having the at least one first reference data
attribute.
36. The system of claim 32, said computer executable
instructions further comprising:
instructions for receiving a user-provided value;
instructions for querying the data store as a function of the
user-provided value to identify data attributes having
values corresponding to the user-provided value; and

instructions for generating a result set as a function of the
querying, said result set including data objects having
the identified data attributes;

wherein said receiving, querying, and generating instruc-

tions are executed by the one or more processors for each
of a plurality of user-provided values.

37. The system of claim 32 wherein at least two of the
identified first data objects of the collection of identified first
data objects have the same assigned sequence number.

38. A tangible, non-transitory storage medium storing pro-
cessor-executable instructions for self-assembling a plurality
of'individual data analysis tools into a workflow, said storage
medium storing:

instructions for storing a plurality of data attributes for

describing/defining one or more data objects in a storage
device;
instructions for storing in a data store a first data object
having a first attribute set comprising at least one first
data attribute of the plurality of stored data attributes and
a value for said at least one first data attribute;

instructions for storing in the data store a first data analysis
tool (DAT), said first DAT associated with at least one
first reference data attribute of the plurality of stored data
attributes;
instructions for identifying said first data object based on
each at least one first reference data attribute matching
one of the at least one first data attribute of the first data
attribute set and independent of the value for the at least
one first data attribute of the first attribute set;

instructions for generating by said first DAT a second data
object as a function of the identified first data object,
wherein said second data object comprises a second
attribute set comprising at least one second data attribute
of the plurality of stored data attributes, and a value for
said at least one second data attribute of the second
attribute set;

instructions for storing the second data object in the data

store;

instructions for storing in the data store a second data

analysis tool (DAT), said second DAT associated with at
least one second reference data attribute of the plurality
of stored data attributes;

instructions for identifying said second data object based

on each at least one second reference data attribute
matching one of the at least second first data attribute of
the second data attribute set and independent of the value
for the at least one second data attribute of the second
attribute set;

instructions for generating by said second DAT a third data

object as a function of the identified second data object,
wherein said third data object comprises a third attribute

10

25

40

45

55

30

set comprising at least one third data attribute of the
plurality of stored data attributes, and a value for said at
least one third data attribute of the third attribute set;

instructions for storing said third data object in the data
store;

instructions for adding a new data object to the data store,

said new data object having a particular set of data
attributes;
in response to said adding the new data object to the data
store:
instructions for determining whether each at least one
first reference data attribute matches one of the data
attributes of the new data object, and
instructions for determining whether each at least one
second reference data attribute matches one of the
data attributes of the new data object;
instructions for receiving a user-provided value;
instructions for querying the data store as a function of the
user-provided value to identify data attributes having
values corresponding to the user-provided value;

instructions for generating a result as a function of the
querying, said result set including data objects having
the identified data attributes, wherein said receiving,
querying, and generating instructions are executed by
the one or more processors for each of a plurality of
user-provided values; and

instructions for iteratively selecting one identified first data

object from the collection of identified first data objects
for analysis by the first DAT, wherein the instructions for
generating by said first DAT a second object as a func-
tion of the identified first data object comprises instruc-
tions for generating by said first DAT, for each iteratively
selected one identified first data object, a second data
object as a function of the selected one identified first
data object.

39. The storage medium of claim 38, wherein said instruc-
tions for identitying said first data object comprises instruc-
tions for determining that each of the at least one first refer-
ence data attribute is identical to or has a semantic lexical
relationship with one of the at least one first reference data
attribute.

40. The storage medium of claim 38, the storage medium
further storing:

instructions for mapping a plurality of the stored data

attributes together;

instructions for determining whether each at least one first

reference data attribute is mapped to one of the at least
one first data attribute, wherein the first data attribute
matches the first reference data attribute when the first
data attribute is determined to be mapped to the first
reference data attribute.

41. The storage medium of claim 38, wherein said first
DAT is associated with a first reference data object, said first
reference data object having the at least one first reference
data attribute.

42. The storage medium of claim 38, the storage medium
further storing: instructions for assigning a sequence number
to each of the identified first data objects of the collection of
identified first data objects, wherein the assigned sequence
number defines an approximate order for analysis by the first
DAT.

43. The storage medium of claim 42 wherein at least two of
the identified first data objects of the collection of identified
first data objects have the same assigned sequence number.

US 9,262,469 B1

31

44. A system for self-assembling a plurality of individual
data analysis tools into a workflow, the system comprising:
at least one processor;
at least one data storage device storing computer execut-
able instructions for execution by the processor; said
data storage device:
storing a plurality of data attributes for defining one or
more data objects;
storing in the data store a first data object having a first
attribute set comprising at least one first data attribute
of'the plurality of stored data attributes and a value for
said at least one first data attribute;
storing in the data store a first data analysis tool (DAT),
said first DAT associated with at least one first refer-
ence data attribute of the plurality of stored data
attributes;
said computer executable instructions comprising:
instructions for identifying said first data object based on
each atleast one first reference data attribute matching
one of the at least one first data attribute of the first
data attribute set and independent of the value for the
at least one first data attribute of the first attribute set;
instructions for generating by said first DAT a second
data object as a function of the identified first data
object, wherein said second data object comprises a
second attribute set comprising at least one second
data attribute of the plurality of stored data attributes,
and a value for said at least one second data attribute
of the second attribute set;
instructions for storing the second data object in the data
store;

10

15

20

25

30

32

instructions for storing in the data store a second data
analysis tool (DAT), said second DAT associated with
at least one second reference data attribute of the
plurality of stored data attributes;

instructions for identifying said second data object
based on each at least one second reference data
attribute matching one of the at least one second data
attribute of the second data attribute set and indepen-
dent of the value for the at least one second data
attribute of the first attribute set;

instructions for generating by said second DAT a third
data object as a function of the identified second data
object, wherein said third data object comprises a
third attribute set comprising at least one third data
attribute of the plurality of stored data attributes, and
a value for said at least one third data attribute of the
third attribute set;

instructions for storing said third data object in the data
store; and

instructions for iteratively selecting one identified first
data object from the collection of identified first data
objects for analysis by the first DAT, wherein the
instructions for generating by said first DAT a second
object as a function of the identified first data object
comprises instructions for generating by said first
DAL, for each iteratively selected one identified first
data object, a second data object as a function of the
selected one identified first data object.

#* #* #* #* #*

